Automatic Transition Prediction in a Navier–Stokes Solver Using Linear Stability Theory

نویسندگان

چکیده

A structured Reynolds-averaged Navier–Stokes solver is directly coupled to a linear stability theory (LST) include the effect of laminar–turbulent transition in flow simulations. The flowfield variables are used both find streamlines along which can be predicted and provide LST code with required boundary-layer profiles. Instabilities included analysis Tollmien–Schlichting crossflow nature relevant high-Reynolds-number flows low turbulence environments. coupling fully automated therefore efficiently design geometries external flows. Technical University Braunschweig’s sickle wing spanwise-varying natural laminar version Common Research Model simulated under various conditions. Applications these three-dimensional test cases showcase capability method model real physics. Advantages challenges approach regard future endeavors discussed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

using game theory techniques in self-organizing maps training

شبکه خود سازمانده پرکاربردترین شبکه عصبی برای انجام خوشه بندی و کوانتیزه نمودن برداری است. از زمان معرفی این شبکه تاکنون، از این روش در مسائل مختلف در حوزه های گوناگون استفاده و توسعه ها و بهبودهای متعددی برای آن ارائه شده است. شبکه خودسازمانده از تعدادی سلول برای تخمین تابع توزیع الگوهای ورودی در فضای چندبعدی استفاده می کند. احتمال وجود سلول مرده مشکلی اساسی در الگوریتم شبکه خودسازمانده به حسا...

Solving non-linear Horn clauses using a linear solver

Developing an efficient non-linear Horn clause solver is a challenging task since the solver has to reason about the tree structures rather than the linear ones as in a linear solver. In this paper we propose an incremental approach to solving a set of non-linear Horn clauses using a linear Horn clause solver. We achieve this by interleaving a program transformation and a linear solver. The pro...

متن کامل

The Theory of Linear Prediction

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means-electronic, mechanical, photocopy, recording, or any other except for brief quotations in printed reviews, without the prior permission of the publisher. ABSTRACT Linear prediction theory has had a profound impact in the field of digital signal processing....

متن کامل

Stability Analysis of Periodically Switched Linear Systems Using Floquet Theory

Stability of a switched system that consists of a set of linear time invariant subsystems and a periodic switching rule is investigated. Based on the Floquet theory, necessary and sufficient conditions are given for exponential stability. It is shown that there exists a slow switching rule that achieves exponential stability if at least one of these subsystems is asymptotically stable. It is al...

متن کامل

Creep Prediction Using The Non-Linear Strain Energy Equivalence Theory

The Non-Linear Strain Energy Equivalence Theory, a semi-empirical model, is utilized to predict longterm creep from short-term compressive stress-strain experiments conducted at different strain rates. Stress-strain experiments in uni-axial compression are performed at strain rates of 3 and 0.03 %/minute to predict creep behavior and stress-strain data at several strain rates for an immiscible ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AIAA Journal

سال: 2021

ISSN: ['0001-1452', '1533-385X', '1081-0102']

DOI: https://doi.org/10.2514/1.j059910